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Abstract
An analysis of the general representation of the occupation number matrix on density functional
theory in conjunction with the generalized Hubbard model is presented. A central fact that will
be addressed is that the total charge density cannot be broken down into simple atomic
contributions. This fact means that the orbital occupations are not well defined. Different
representations of the occupation number matrix, both that it conserves and that it does not
conserve the number of electrons of the system, are compared. A localized basis set is used,
which is suitable for large-scale electronic structure calculations based on the density functional
theory. This methodology is applied to typical and well-analysed transition-metal oxide bulk
systems and to Cr-doped zinc chalogenides and chalcopyrites. The bandgap, magnetic moment
and detailed electronic structures are investigated and discussed with the different choices of the
occupation number matrix. The results are in good agreement with previous theoretical and
experimental studies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transition-metal monoxides MnO, FeO, CoO and NiO
occupy a special place in condensed-matter physics, because
they are regarded as prototypes of the Mott-insulator
concept [1]. These materials are antiferromagnetic, electrically
insulating, ionic compounds forming in a rocksalt structure.
They were among the first highly correlated systems found,
where band theory fails to describe a wide range of physical
properties. It is mainly the large size of the insulating gap, and
often the occurrence of a gap at all, which cannot be explained
adequately in one-particle band-structure formalisms [2] such
as the local spin density (LDA) and generalized gradient
approximation (GGA). A strong Coulomb correlation between
the d electrons is responsible for the insulating nature of the
monoxides. The d electrons remain localized at the metal ions,
because of their Coulomb correlation. It prevents them from
forming an incompletely filled d-band. It is this coexistence
of local and band-like features in the electronic structure and
the resulting physical properties such as the occurrence of the
large insulating gaps in the transition-metal monoxides which
has led to the longstanding interest in these materials. It
has led to the intensification of both theoretical [3–15] and
experimental research into the electronic structure of these
compounds. No unified theoretical approach is currently

available which can describe the electronic properties of
the monoxides. In particular, single-particle band-structure
calculations cannot reproduce the measured gap widths of
the oxides. The reason for these discrepancies is the strong
Coulomb interaction between the d electrons in the oxides,
which cannot be treated correctly in single-particle band-
structure calculations. This Coulomb correlation prevents
the electrons from forming d-bands and localizes them at
the transition-metal ions. Recent theoretical work [3–15] on
the transition-metal oxides introduces more realistic electron
interactions and correlations into band-structure calculations
and therefore tries to integrate the Mott–Hubbard or charge-
transfer picture into band models.

The LDA and GGA approaches for calculating ground-
state properties have been widely successful for a wide range
of materials [2]. However, in cases where local correlations
are strong, they tend to become less accurate or break
down. Despite these difficulties, the LDA/GGA has been
used successfully to calculate the local Coulomb-interaction
parameters in many cases where correlation effects are weak.
Some of the failures of the LDA/GGA to describe the ground-
state properties of some strongly correlated systems are due
to a non-physical interaction of an electron with itself. The
LDA/GGA is known to fail particularly badly for transition-
metal oxides, giving much too small or zero bandgaps and, in
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some cases, too small magnetic moments as well. Therefore,
one of the fundamental problems intrinsic to the semilocal
functionals is the presence of self-interaction. A direct
consequence of the self-interaction in LDA/GGA is that the
Kohn–Sham (KS) potential becomes too repulsive and exhibits
an incorrect asymptotic behaviour. In general, self-interaction
free potentials bind more than LDA/GGA and one expects
larger gaps.

Attempts to go beyond LDA/GGA [2] are based on
the self-interaction-corrected density functional theory (SIC-
DFT), the LDA/GGA+U method, the so-called B3LYP hybrid
density functional and the GW approximation. These methods
represent corrections of the single-particle KS potential in
one way or another and lead to substantial improvements
in the LDA/GGA results for the values of the energy gap
and local moment. Within the SIC-DFT and LDA/GGA +
U methods the self-interaction is subtracted explicitly. It
results in a splitting of occupied and unoccupied states by the
substantial on-site Coulomb interaction, which is an essential
aspect of the physics of Mott insulators. In the B3LYP
functional the spurious self-interaction is reduced through the
Hartree–Fock exchange, and the hybrid functional treats the
correlation more appropriately by optimizing the coefficients
of the various terms describing the correlation effects. The
GW method goes one step further by calculating the self-
energy to the lowest order in the screened Coulomb interaction,
and the obtained band structure shows a better agreement.
Nevertheless, the GW method, based on the perturbative
random-phase approximation, is computationally demanding.
The LDA + DMFT approach also combines band-structure
theory within the LDA approximation with the many-body
theory as provided by dynamical mean-field theory (DMFT).
Within DMFT, a lattice model is mapped onto an effective
impurity problem embedded in a medium which has to be
determined self-consistently, for example, by quantum Monte
Carlo simulations. This mapping becomes exact at the limit of
infinite dimensions. Therefore, compared with the LDA/GGA,
the previous methods capture the physics of transition-metal
oxides more correctly and improve the results for the energy
gap and local moment significantly.

A large number of studies of transition-metal monoxides
have been carried out [3–15], differing in the basis used
and/or the details of the approximations. Furthermore,
different implementation schemes lead to quite different results
regarding the value of the insulating gap and the relative
positions of the energy bands. The B3LYP functional has
been successfully applied to strongly correlated systems and
semiconductors of different bonding types [3] and NiO [4].
Other previous methods have also been applied: the SIC-
LDA to transition-metal oxides [5], molecules and solids [6];
the LDA + DFMT to the NiO [7]; the GGA + U to
transition-metal oxides for obtaining the oxidation energies [8],
the GW method to different systems [9, 10], etc. Also,
different implementations of the LDA + U within the all-
electron projector augmented-wave method [11], full-potential
linearized augmented plane-wave method [12], rotational-
invariant form based on a linear response approach [13] and
with localized pseudoatomic basis sets [14–17] have been
carried out.

Among various approaches, the LDA/GGA + U
method [18] is one of the simplest orbital-dependent function-
als in which a generalized Hubbard model is introduced in or-
der to treat the localized electrons. It is also one of the least
computationally demanding. Because of the simple treatment
of the on-site Coulomb correlation effect and the modest com-
putational time, LDA/GGA + U can be considered as one of
the most efficient approaches for the description of large-scale
correlated systems. However, it should be noted that, although
the use of a localized basis set is natural for the implementation
of LDA/GGA + U methods, there has been some ambiguity in
the definition of the occupation number.

The charge density contains two types of term. With
a localized basis set, one term consists of atom-centred
contributions (monocentric) and is clearly identified as a
contribution to the charge of the atom where the functions
are localized. The other contributions, bicentric, correspond
to the product of functions located at different atoms. The
bicentric contribution cannot be assigned uniquely to any atom.
Therefore, the populations are not unique. Moreover, the
population scheme depends on the choice of the basis set. If the
overlap matrix is the identity, the overlap densities will be zero.
The total charge will then be divided formally between the
atoms alone. For example, when the overlap matrix is not the
identity matrix, the Mulliken decomposition [2], which assigns
half of each term to the atoms, is widely used. However, the
Mulliken population, like all population analyses, is arbitrary
and dependent on the flexibility of the basis set. Other possible
choices [2] are: Löwdin population, projections on normalized
atomic orbitals, projections on Wannier functions, angular
momentum decomposed radial charge around the atoms, etc.

A statement that must be stressed is that the total
charge density cannot be broken down into simple atomic
contributions. This fact means that the orbital occupations,
which are the centrepiece of the LDA/GGA + U approach, are
unfortunately not well defined. Therefore, a central fact that
will be addressed is the influence of the orbital occupations
within the LDA/GGA + U approach.

Using a localized basis set with several representations of
the occupation number matrix within the LDA/GGA+U band-
structure scheme, the electronic structures of several transition-
metal oxides (MnO, FeO, CoO and NiO) have been analysed.
Some of the representations of the occupation matrix preserve
the original concept of atomic density and the conservation of
the electron number of the system, and others do not make it.
We compare the physical quantities obtained by introducing
these general representations with other definitions suggested
before.

In order to analyse the effect of different LDA/GGA +
U calculation schemes on other systems, we have chosen
some systems with a partially full intermediate band (IB): in
particular, the Cr-doped zinc chalogenides (CrxZn1−x S, with
x = 1/32) and the Cr-doped chalcopyrite (Crx Ga1−x CuS2,
with x = 1/16). The interest in these systems is both
technological and theoretical. Technologically, these crystals
have very recently attracted the attention of researchers as
magnetic semiconductors for spintronics and intermediate-
band solar cells. Cr can be incorporated into the wide-
bandgap semiconductor, such as ZnS or ZnSe, and exhibits
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room-temperature operation in the mid-infrared. Theoretically,
because of the narrow and partially filled IB characteristics,
the correlation effects should be very important. The IB
electrons are supposed to spend their time in regions (around
the ions) where the presence of other electrons would make
them feel strong Coulomb repulsion, thus correlating their
motion. In references [16, 17] the bulk systems Crx Zn1−x X
with X = S and Se and x � 0.0625, with an IB for the
majority spin component, are analysed theoretically with the
LSDA + U methodology for a wide range of U . The results
of the LSDA + U method seem surprising due to the small
influence of the U parameter on the electronic properties of
the IB. The shift in the position and splitting of the partially
filled IB because of the local Coulomb interaction U is very
small. The Coulomb interaction induces almost no changes in
the occupied bands (the full VB and the partially filled IB).
The expected shift in the Cr d-bands is indeed observed in the
CB. We analyse this behaviour as a function of the calculation
scheme and the occupation matrices.

This paper is organized as follows. In section 2.1 the
LDA/GGA + U computational scheme used is presented. The
general basis for modelling the occupation number matrix is
discussed in section 2.2 and details of the implementation will
be set out. The results are discussed and compared with the
experiment in section 3, and finally we conclude this paper in
section 4

2. Methodology

In this section we derive the fundamental equations for the
representation of the occupation number matrix, while looking
closely at the main approximations involved in comparison
to other representations. Our practical implementation of the
LDA/GGA + U method and the occupation matrices are also
described.

2.1. LDA/GGA + U total energy functional

The currently used exchange and correlation functionals are
built from a homogeneous electron gas so that interactions
are treated in a mean-field approach which is not accurate
enough to describe correlations properly or account for other
many-body effects. Therefore, a further extension beyond
the LDA/GGA is carried out using the LDA/GGA + U
method [18]. The LDA/GGA + U method is one of the
simplest orbital-dependent functionals in which a generalized
Hubbard model is introduced in order to treat the localized
electrons. The LDA/GGA + U total energy functional is
given by adding the energy of a generalized Hubbard model
for the localized electrons to the LDA/GGA functional and by
subtracting a double counting energy of the localized electrons
described in a mean-field sense. The approach used as the
starting point corresponds to the fully localized limit: (FLL)
LDA/GGA + U ,

ELDA/GGA+U [ρ(σ), n(σ )] = ELDA/GGA[ρ(σ)]
+EU [n(σ )] − EDC[n(σ )] (1)

where the Hubbard-like functional (EU ) and double counting
term (EDC) are

EU = 1
2U

∑

m1,m2,σ

n(σ )
m1

n(−σ )
m2

+ 1
2 (U − J )

∑

m1 �=m2,σ

n(σ )
m1

n(σ )
m2

, (2)

EDC = U

2
n(n − 1) − J

2

∑

σ

nσ (nσ − 1) (3)

and where nσ = Tr(n(σ )
m1m2

) = ∑
m n(σ )

mm , n = ∑
σ nσ , n(σ )

m =
n(σ )

mm and n(σ )
m1m2

are the elements of the occupation number
matrix nσ , which is calculated self-consistently within this
approach. Additionally, we assumed the screened Coulomb
and exchange parameters U and J independent of the magnetic
quantum number m, although they are dependent on the
quantum number l. These approximations correspond to
neglecting the possible non-spherical character of the effective
interactions (the dependence of U and J on the magnetic
quantum numbers). As well the results are very insensitive
to J when U − J is fixed. Therefore, the U and J terms
are grouped together into a single effective parameter, and this
effective parameter will be referred to as U in this paper.

Both the occupation numbers as well as the effective
Coulomb energy U are crucial in the determination of the
correlation effects. The screened U parameter can be estimated
theoretically using constrained LDA/GGA calculations by
varying the occupation numbers of the d orbitals [19, 20].
However, in many cases the value of U obtained theoretically
is different from the optimal value determined empirically
as a fitting parameter to experimental results. Therefore,
this theoretical value must be considered as an approximate
value. As has also been previously mentioned, the U
depends additionally on the particular implementation of the
LDA/GGA + U .

However, equally or more important is the ambiguity in
the definition of the occupation number matrix. It is due to the
nature of bonding and it can be illustrated in a very simple way.
Let us consider for simplicity a diatomic molecule AB, i.e. a
bicentric charge distribution DAB. We want to break down this
bicentric distribution into two, one associated to the atom A
(DA) and the other one to the atom B (DB): DAB = DA + DB.
But DAB = αDAB + (1 − α)DAB, i.e. DA = αDAB and DB =
(1−α)DAB, where α is an arbitrary parameter. Note that DAB,
DA, DB and α depend on the spatial coordinates. Therefore,
the breaking down of a multicentre charge distribution is totally
arbitrary. It also causes an arbitrary change in the definition of
the occupation numbers’ matrix. Of course, any decomposition
criteria of the electronic density should preserve the original
concept of atomic density.

2.2. Orbital occupations

The occupation numbers are crucial in the determination of the
correlation effects from a theoretical and computational point
of view. As the total charge density cannot be broken down into
simple atomic contributions, the orbital occupations, which are
the centrepiece of the LDA/GGA + U approach, unfortunately
are not well defined. For a localized basis set, this ambiguity
in the definition of the occupation number matrix is due to the
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nature of the non-orthogonality of the localized basis orbitals.
In this section several different definitions of the occupation
number matrix are compared and discussed.

The occupation number matrix nσ can be evaluated from
the density operator or by introducing a projection operator
P̂(σ )

m as n(σ )
m = ∑

μ q(σ )
μ 〈ϕ(σ)

μ |P̂(σ )
m |ϕ(σ)

μ 〉, where ϕ(σ)
μ are

the KS eigenvectors for the μ state with spin index σ

and q(σ )
μ is their occupation. This index μ includes the

band and momentum indices. The m index includes the
site, angular momentum and multiplicity of basis function
indices. For the case of non-orthogonal basis orbitals,
however, different sets of occupation number matrices are
expected to emerge from different choices of the projection
operators P̂(σ )

m . The effective non-local potential in terms of
the projectors is V̂ (σ ) = ∑

m U (σ )
m (1/2 − n(σ )

m )P̂(σ )
m and the

orbital energy ε
(σ )

m[LDA/GGA+U ] = ∂ E/∂n(σ )
m = ε

(σ )

m[LDA/GGA] +
U (σ )

m (1/2 − n(σ )
m ).

Two choices have been extensively used in previous
implementations of LDA/GGA + U . One version totally
ignores the overlaps between the non-orthogonal basis set
|χm〉, the so-called on-site representation [21]. The projectors
for this case (model m1) are P̂(σ )

m = |χ̄m〉〈χ̄m |, where the
basis set χ̄m is the biorthogonal or dual basis of the χm :
|χ̄m〉 = ∑

i S−1
mi |χm〉 with 〈χ̄i |χ j 〉 = δi j .The corresponding

occupation number matrix is n(1)
σ = Dσ , where Dσ is the

density matrix of the system. Another version used in the
literature [15–17, 20], the so-called full representation, takes
care of the overlaps (model m2). For this choice the projectors
are P̂(σ )

m = |χm〉〈χm | and the occupation number matrix is
n(2)

σ = SDσ S. These two occupation number matrices do
not conserve the number of electrons, i.e. the trace of the
occupation number matrices is not equal to the total number of
electrons, although they have the advantage of being Hermitian
matrices.

Another definition of the projector and the corresponding
occupation number matrix is the so-called ‘dual’ or Mulliken
representation [14]. The projectors for this case are: P̂(σ )

m =
|χm〉〈χ̄m |. In this formulation, the occupation number matrix
n(3)

σ = SDσ is treated consistently in the same way as in the
Mulliken population analysis. This choice has the advantage
of conserving the number of electrons, but the projectors and
occupation number matrices are not Hermitians. It is solved by
doing the transformation A → (A + A†)/2 in order to make
sure that the resulting effective non-local potential becomes
Hermitian.

To be consistent with the use of a non-orthogonal basis
set with respect to the conservation of the number of electrons
of the system, we introduce a general representation of the
occupation number matrix and the corresponding projectors.

The population analysis relates nσ as a function of the
band occupations q (σ )

μ . In general this relation is a function
of the matrix Cσ that related the μ-band with the i -orbital
basis set (|ϕ(σ)

μ 〉 = ∑
i C (σ )

iμ |χi〉), the overlapping matrix
S(Si j = 〈χi |χ j〉) and the density matrix Dσ = Cσ Qσ C†

σ .
The Qσ is a diagonal square matrix whose elements are the
band occupation numbers: Q(σ )

μν = q(σ )
μ δμν . Both Cσ and

Qσ are obtained in the calculations. The principal population

analysis use the property Nσ = Tr z[Qσ ] = ∑
μ q(σ )

μ ,
where N = ∑

σ Nσ is the total number of electrons. The
Qσ is related to the matrix nσ , in general non-diagonal, so
that Nσ = Tr z[nσ ]. The arbitrariness in the population’s
analysis is a consequence that: (i) for obtaining the trace
of a product of matrices the order of the product of the
matrices is not relevant, (ii) the matrix trace is invariant with
respect to the similarity transformation: Nσ = Tr z[nσ ] =
Tr z[Gσ Qσ G−1

σ ], where Gσ is an arbitrary matrix. For
example, in the Mulliken population analysis G(M)

σ = Cσ ,
whereas in the Löwdin population analysis G(L)

σ = S1/2Cσ

(unitary matrix). Keeping all of this in mind we can define the
projectors P̂(σ )

m = |a(σ )
m 〉〈b(σ )

m |, where a(σ )
i = ∑

j A(σ )
i j χ j and

b(σ )
i = ∑

j B(σ )
i j χ j , with Bσ=(Gσ C†

σ )∗ and Aσ = (Cσ G−1
σ )T .

With this choice the corresponding representations of the
occupation number matrix and the matrix of the non-local
LDA/GGA+U potential are nσ = (Gσ C−1

σ )Dσ (Gσ C†
σ )−1 and

V(DFT+U)
σ = (Gσ C†

σ )−1Vσ (Gσ C−1
σ ) with V (σ )

i j = U (σ )
m (1/2 −

n(σ )
m )δimδi j . This choice conserves the number of electrons,

but the projectors and occupation number matrices are not
Hermitians. It is solved by doing the transformation nσ →
(nσ + n†

σ )/2 and similarly for V(DFT+U)
σ . In these definitions

it is not the overlap matrix explicitly. In order to reflect this
fact explicitly and to relate the general matrix Gσ directly
with Mulliken and Löwdin population’s analyses we will use
Gσ = Bσ SαCσ , where Bσ is an arbitrary matrix and α is an
arbitrary parameter. This way, α = 0 or 1 corresponds to the
Mulliken population’s analyses, and α = 1/2 corresponds with
the Löwdin population’s analyses.

2.3. Implementation details

We will use Gσ = Bσ SαCσ with Bσ equal to the identity
matrix for the occupation number matrix and the projectors.
These schemes that conserve the number of electrons will be
labels like p(α). Note that p(0) corresponds to the Mulliken
scheme and p(1/2) to the Löwdin scheme. In general, the
calculation of the Sα is proportional to N3, where N is
the S dimension. Therefore, this process is computationally
expensive. Nevertheless, the computational cost is reduced by
doing the approximation to first order: S−α ≈ I + αX = (1 −
α)I + αS. The inconvenience of this approximation is that the
scheme no longer preserves the total electron number. These
schemes that do not conserve the number of electrons will be
labelled as p′(α). Neither the schemes m1 nor m2 conserve
the number of electrons. Note that, with the approximation of
the Sα matrix, the p′(α) scheme is a linear combination of the
m1, m2 and Mulliken schemes: p′(α) = α(1−α)[m1+m2]+
[α2 + (1 − α)2]p(0). In particular p′(0) = p(0) corresponds
with the Mulliken scheme.

Note that during the LDA/GGA + U calculations we
will use the same scheme for the projectors and for the
occupation numbers. We will refer to them as calculation
schemes p(α)-, p′(α)-, m1- or m2-LDA/GGA + U . However,
after the calculation, we can carry out a different population
analysis based on the different occupation numbers. Therefore,
independently of the LDA/GGA + U calculation scheme, we
will also carry out population analysis based on the occupation
numbers p(α), p′(α), m1 or m2.
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Table 1. Comparison of the experimental and theoretical magnetic moments of the transition-metal Mott oxides obtained using different
schemes. For the LDA/GGA + U schemes the U (eV) value is indicated within parentheses.

μ(μB) NiO MnO FeO CoO

Expta 1.64–1.90 4.58–4.79 3.32 3.35–3.8
LDA-SICb 1.49 4.64 3.55 2.59
GGA + U c 1.72(6.4) 4.65(4) 3.69(4) 2.65(3.3)
LDA + U 1.62–1.79d (6), 1.5e (6)
Others 1.56f (GW), 1.67g (B3LYP)
This work 1.22–1.90(6) 3.78–5.4(6) 3.1–4.1(4.3) 2.2–3.0(6)

a Reference [30]; b Reference [5]; c Reference [8]; d Reference [14]; e Reference [31];
f Reference [9, 10]; g Reference [4].

2.4. Calculations

The electronic structure calculations were carried out by using
the DFT [22] method based on pseudopotentials for core
electrons and numerically localized pseudoatomic orbitals as
the basis set for the valence wavefunctions. The standard
KS [23] equations are solved self-consistently [24]. For the
exchange and correlation term, the LDA has been used as
proposed by Ceperley–Alder [25] and the GGA corrections
in the form of Perdew, Burke and Ernzerhof [26]. The
standard Troullier–Martins [27] pseudopotential is adopted and
expressed in the Kleinman–Bylander [28] factorization. The
KS orbitals are represented using a linear combination of
confined pseudoatomic orbitals [29]. An analysis of the basis
set convergence has also been carried out using from single-
zeta to double-zeta with polarization basis sets for all atoms
and varying the number of special k points in the irreducible
Brillouin zone (BZ). In all calculations a double-zeta with
polarization function basis set (DZP) has been used, and we
use periodic boundary conditions with 686 special k points in
the irreducible BZ.

3. Results

We have used this ab initio band-structure scheme to study
the electronic structure of MnO, FeO, CoO and NiO. The
transition-metal monoxides form ionic, antiferromagnetic
crystals with the NaCl structure. The antiferromagnetic order
of the transition-metal monoxides MnO, FeO, CoO and NiO is
of that type which is often called type II antiferromagnetism.
The (111) planes of the transition-metal sublattice are planes
of parallel spins; adjacent (111) planes show an antiparallel
alignment of the spins. From a simple band-structure
point of view, NiO, CoO and MnO should be metals like
the corresponding transition metals, as a result of their
incompletely filled d states. But, as mentioned previously, they
are insulators with wide insulating gaps. Whereas the O states
form bands with a dispersion consistent with LDA/GGA band-
structure calculations, the application of these calculations to
the d metal states produces results in contradiction to a lot of
experimental evidence.

3.1. General comparison with other results

Because the majority of calculations in the transition-metal
monoxides have been carried out with the experimental lattice

spacing, we have also used this experimental lattice constant
in order to compare our results with many others in the
literature. Although the U values can be obtained theoretically
using constrained calculations, we have preferred to use values
within the range of those used in the literature. These U values
are not the optimal ones. However, these values permit the
influence of the different occupation matrices to be shown,
which is the aim of this work.

Just like the previous LDA/GGA + U and LDA-SIC
calculation results, the typical increase in the bandgaps is
observed. The magnitudes of the gaps and the magnetic
moments are well compared in a reasonable agreement with
experimental results as well as the previous calculations.
Tables 1 and 2 illustrate the enhancement of the gaps and
magnetic moments. As expected, larger magnetic moments
are obtained with LDA/GGA + U , and the values are in
good agreement with experiments and previous calculations.
The difference between the gaps and magnetic moments from
different occupation matrices will be discussed later.

Depending on the U values, there is a substantial
combination of the oxygen states with the metal states.
The details of this mixture determine the position of the
oxygen bands with respect to the metal bands and hence
the energy bandgap. These results differ dramatically from
those corresponding LDA/GGA results where the top of the
valence bands and the bottom of the conduction bands are
the metal d states. Therefore, the bandgaps occur in the
LDA/GGA, if at all, between metal d states, at variance
with experimental evidence. The use of the LDA/GGA + U
method for studying FeO and CoO is mainly motivated by the
attempt to reproduce the observed insulating behaviour. In fact,
standard DFT methods, such as LDA or GGA, produce a non-
physical metallic character because neither the crystal field nor
electronic structure effects are sufficient in this case to open
up a gap. However, using LDA/GGA + U , a gap opens up at
around the Fermi level.

In general, with all occupation schemes the GGA + U
produces an increase in the gaps and magnetic moments with
respect to those of the LDA + U . However, qualitatively, the
results are similar.

In general, for the different calculation schemes there is a
decrease in both the gap and the magnetic moments with the
α increase from 0 to 1/2 for both schemes, p(α) and p′(α):
p(1/2) � p(α) � p(0)-LDA/GGA + U and p′(1/2) �
p′(α) � p′(0)-LDA/GGA+U . For α fixed, there is a decrease
in both the magnetic moments and the gaps as the calculation

5
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Table 2. Comparison of the experimental and theoretical gaps in the transition-metal Mott oxides obtained with different schemes. For the
LDA/GGA + U schemes the U (eV) value is shown in brackets.

Gaps (eV) NiO MnO FeO CoO

Expt 4.0–4.3a 3.6–3.8b 2.4c 2.4d

LDA-SICe 2.66 3.57 3.25 2.51
GGA + U f 3.4(4) 3.2(4) 2.2(4) 2.0(3.3)
LDA + U 3.89g (6), 3.1h (7.05), 2.7i (6) 4.21g (6), 3.5h (6.04) 2.77g (6), 3.2h (5.91), 2.0j (4.3) 3.01g (6), 3.2h (6.88)
Others 3.7k (GW), 4.2l (B3LYP)
This work 2.8–3.9(6) 1.8–2.6 (6) 1.9–2.7(4.3) 1.21–2.72(6)

a Reference [32]; b Reference [33]; c Reference [34]; d Reference [35]; e Reference [5]; f Reference [8]; g Reference [14];
h Reference [20]; i Reference [31]; j Reference [13]; k Reference [9, 10]; l Reference [4].

schemes change from p(α) � p′(α) > m2-LDA/GGA + U
and p′(α) � p(α) > m2-LDA/GGA + U , respectively. Note
that, with α very small, p′(α) ≈ p(α). The behaviour of the
magnetic moments is independent of the occupation number
matrices used, after the calculation, to obtain the magnetic
moments.

From a numerical point of view, the robustness of the
convergence in the self-consistency iterations depends on
the definition of the occupation number matrix discussed in
section 2. Because the calculation of the Sα in each cycle
is proportional to N3, where N is the S dimension, the
LDA/GGA + U calculations based on the p(α) scheme is
slower than that based on p′(α). The convergence of the p(α)

scheme is similar for 0 � α � 1/2, except for α next to zero.
For the p′(α) scheme, the convergence rate for α next to zero
is also slower. In this case the p′(α) scheme is similar to the
p(α) scheme.

With multiple-zeta and polarization orbitals it is not clear
how the LDA/GGA+U calculation will be affected by the use
of these types of basis set. In particular when we apply the
self-interaction correction to the transition-metal d orbitals for
a DZP basis set with two d-shells, we have several options: to
apply a self-interaction U1 to the first shell and zero for the
second shell, zero for the first shell and U2 for the second
shell, and U1 to the first shell and U2 for the second shell.
The result demonstrates that the calculated electronic structure
is not greatly affected by the use of additional multiple-zeta
orbitals whenever the self-interaction is included for the more
confined d-shell. To include the self-interaction within more
d-shells increases the gap slightly. However, to not include
the first d-shell brings about a great reduction in the gap with
results more similar to LDA/GGA. Thus, we use the basis set
subspace consisting of the more confined d-shell for the self-
interaction correction.

3.2. NiO

LDA/GGA produced an antiferromagnetic insulating ground
state with a small bandgap and a small magnetic moment with
respect to the experimental values (tables 1 and 2). The most
interesting feature of our LDA/GGA is that the d states of Ni
dominate the region in the vicinity of the bandgap: the top of
the valence band has a t–d Ni character and the bottom of the
conduction band is made up of the e–d Ni orbitals.

With LDA/GGA + U we have applied the self-interaction
correction only to the occupied transition-metal 3d states using

an intermediate U of 6 eV in accordance with results reported
in the literature. In agreement with previous LDA/GGA + U
calculations, the spin majority e+ states are pushed towards
lower energies. The Ni e+ peak occurs about 7–8 eV below
the valence-band edge, which is in good agreement with the
position of the experimentally observed [32–36] and of the
theoretically calculated [4, 5, 7, 10–14]. Consequently, the
Ni 3d bands are closer to the region where the O orbitals
contribute more, because of the Hubbard interaction. These
results differ dramatically from the corresponding LDA/GGA
results where the top of the valence bands and the bottom of
the conduction bands are the metal d states. A substantial
d-band splitting also occurs because of the self-interaction.
The energy difference between e+ and e− is about 10 eV for
U = 6 eV and 13–14 eV for U = 10 eV. Here again the GW
model yields a value of about 9 eV for this splitting [10], in
good agreement with our results for U = 6 eV. Nevertheless,
different implementations of the GW scheme lead to different
results with respect to the gap and the relative positions of the
energy bands [9, 10].

In order to gain more insight into the nature of the bandgap
in figure 1 we show the total densities of states and their
decomposition into the metal and oxygen components for NiO
with several schemes of the occupation matrix with LDA + U .
Quantitatively the GGA + U produces an increase in the gaps
with respect to that of the LDA+U , but qualitatively the results
are similar.

The change of the gap with α for the p(α)- and p′(α)-
LDA/GGA + U schemes is shown in figure 2. From this
figure we have obtained several conclusions: (i) the gap using
GGA+U is larger than when LDA+U is used. This difference
is larger for α = 0; (ii) for both schemes, p(α) and p′(α), the
gaps decrease from α > 0.13 to α = 1/2, except to the p′(α)-
LDA+U scheme; (iii) in general, for α fixed and α > 0.13, the
gap is larger for the p′(α)-LDA/GGA + U scheme that for the
p(α)-LDA/GGA+U scheme; (iv) with the m2-LDA/GGA+U
scheme, the gaps are lower than that obtained with the p(α)

and p′(α) schemes for 0 � α � 1/2.
The change in the magnetic moments with α for the p(α)-

and p′(α)-LDA/GGA + U schemes is shown in figure 3 as
a function of α. Note that in the self-consistency iterations
we use the same scheme for the occupation matrices and
projectors. However, after the calculation, we can use any
one of the occupation schemes in order to obtain the magnetic
moments. For this reason, although we have used the p(α)-
and p′(α)-LDA/GGA + U schemes for the calculations of this

6
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Figure 1. Projected DOS for the NiO on the O and the Ni atoms, as well as the t-Ni and e-Ni orbitals: (a) p(0.1)-, (b) p(0.3)-, (c) p(0.5)-,
(d) m2-, (e) p′(0.3)- and (f) p′(0.5)-LDA + U . The Fermi energy as zero has been chosen in this figure.

figure, the magnetic moments have been obtained using the
same occupation matrices or others different from those used
for the self-consistency calculation. In the figure, the magnetic
moments obtained with the p(α) occupation matrices, the
same as for the p(α)-LDA/GGA + U calculation, are between
the p(0) (Mulliken) and p(1/2) (Löwdin) analyses. When α

is very small for the p′(α) analyses, the results (not shown
in the figure) are similar to the Mulliken analyses. However,
for 1/4 � α � 1/2, the magnetic moment obtained with the
p′(α)-LDA/GGA + U scheme decrease with the α increment,
and are lower than those calculated with the Mulliken, Löwdin,
and in general, with the p(α) scheme. It is interesting
to highlight that the magnetic moments, independent of the
occupation matrix scheme used to calculate them, are almost
constant in the range 0.2 � α � 0.5. Comparing the p(α)-
and p′(α)-LDA/GGA + U schemes, there are differences until

±1 μB when the same type of occupation matrices are used in
order to obtain the magnetic moments.

3.3. MnO

Similar to NiO, the MnO is characterized by partially filled
3d orbitals and an associated local magnetic structure where
the Mn atoms are antiferromagnetically aligned. The top of
the VB is expected to be of a mixed Mn 3d–O 2p character
and the bottom of the CB pure Mn 3d in character. However,
the LDA/GGA description of MnO is a narrow gap insulator
where the edges of the VB and CB are made up of purely Mn
3d states.

In this case, LDA/GGA+U also represents a considerable
improvement with respect to LDA/GGA. The size of the
fundamental gap is more similar to the experimental one and

7
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Figure 2. The gap for the NiO as a function of the α parameter for
the calculation schemes p(α)-GGA + U , p(α)-LDA + U ,
p′(α)-GGA + U and p′(α)-LDA + U .

there is an increase in the contribution of the O atom and a
decrease in the d-Mn character at the top of the VB with respect
to LDA/GGA. However, the contributions from the atoms to
the top of the VB depend on the occupation matrices and
projectors used in the LDA/GGA + U scheme.

The magnetic moment calculated using different calcula-
tion schemes and occupation matrices are shown in panels (a)
of figure 4 for the MnO, and for FeO and CoO in panels (b)
and (c), respectively. The behaviour of the magnetic moment
of these oxides is similar to the previously analysed NiO. The
results are in good agreement with those of the literature [5, 6].

3.4. CoO and FeO

Contrary to the previous cases of NiO and MnO, the
LDA/GGA produces an unphysical metallic character in

contradiction with observation. For FeO and CoO, the
application of the LDA/GGA + U splits the metallic d-band,
within the CB, obtained with the LDA/GGA. This splitting
depends on the scheme used by the occupation matrices and
projectors during the self-consistency calculation.

The calculated LDA/GGA + U DOS is shown in
figure 5, and it is in agreement with that published in
the literature [5, 13, 14], although different implementation
schemes lead to different results regarding the gap value
(see table 1), magnetic moments (see table 2) and position
of the energy bands. Similar to previous transition-metal
monoxides analysed, the value of these magnitudes depend
on the occupation matrix and projector scheme used for the
LDA/GGA + U calculation. With all schemes used, the
partially full metallic d-band in the CB is split into two bands
in agreement with that published in the literature. One is empty
within the CB, and another one full below the CB. Depending
on the scheme, and for U = 4.3 eV fixed, the full d-band is
within the gap, on top of the VB or within the VB. Of course,
an increase in the U value can introduce the full band towards
the interior of the VB. Nevertheless, with this U value the
results are in reasonable agreement with others published in
the literature and with experimental results (see table 1). For
the Mulliken and p′(1/2) schemes the splitting of the original
LDA/GGA metallic band is larger than for the Löwdin and m2
schemes. It also influences the composition of the VB.

For the CoO, the transition-metal sub-band partially
filled in the CB for LDA/GGA has one additional electron
with respect to the FeO. Therefore, the two bands resulting
from the splitting of the partially full metallic d-band when
LDA/GGA + U is applied have different characteristics than
for the FeO. For CoO, the empty band within of the CB has a

Figure 3. The Ni magnetic momentum (μB) for the NiO as a function of the α parameter for the calculation schemes (x axis):
(a) p(α)-GGA + U , (b) p(α)-LDA + U , (c) p′(α)-GGA + U , (d) p′(α)-LDA + U . The curves p(α), p(0), p(0.5), m2, p′(0.5) and p′(0.25)
correspond to the different population analyses (occupation number matrices) used to obtain the magnetic momentum.

8



J. Phys.: Condens. Matter 20 (2008) 325205 C Tablero

Figure 4. Magnetic momentum (μB) of the Mn (a), Fe (b) and Co (c) using different calculation schemes (x axis) m2-, p′(1/2)-, p′(1/4)-,
p(0), and p(1/2)-LDA + U (left panels) and -GGA + U (right panels), The curves p(0), m2, p′(1/2), p′(1/4) and p(1/2) correspond to the
different population analyses (occupation number matrices) used to obtain the magnetic momentum.

lower number of states than for the FeO, whereas the full band
has a larger number of states than for the FeO.

3.5. Other materials

As was previously mentioned in the introduction, in
references [16, 17] the bulk systems CrxZn1−x X with X = S
and Se and x � 0.0625 were analysed theoretically with the
LSDA + U methodology for a wide range of U (from U = 0
to 6 eV). In these works, the methodology used was the m2-
LDA + U for the self-consistent calculation and the p(0)-
Mulliken occupation matrix for the population analyses. From
the results of these works, the systems are characterized by
a partially full intermediate band (IB) for the majority spin

component. Because of the results in the Mott oxides as a
function of the occupation number matrix, in this work we have
expanded the study of these systems with different calculation
schemes.

3.5.1. Cr-doped zinc chalogenides. In figure 6 we show the
projected DOS per atom on Cr, Zn and S atoms for the Cr-
doped zinc chalogenides (Crx Zn1−xS, with x = 1/32) with
U = 3 eV using two different LDA + U calculation schemes:
p(1/2)-LDA + U (panel a) and p(0)-LDA + U (panel b).
The S atoms can be broken down into two groups: those
directly bonded to the Cr atoms and those which are not. Only
the contribution of the S directly bonded to the Cr atoms is
represented in figure 6. These S atoms, and the Cr atoms,

9
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Figure 5. Projected DOS on d-Fe orbitals for the FeO. (a) U = 0 eV.
(b)–(e) with U = 4.3 eV and using the calculation schemes p(0)-,
p(1/2)-, m2 and p′(1/2)-LDA + U . The Fermi energy as zero has
been chosen in this figure.
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Figure 6. Projected DOS on Cr, S (those directly bonded to the Cr
atom) and Zn atoms for the Cr-doped zinc chalogenides (Crx Zn1−x S,
with x = 1/32) with U = 3 eV using (a) p(1/2)-LDA + U and
(b) p(0)-LDA + U . The Fermi energy as zero has been chosen in
this figure.

are the ones that mainly contribute to the IB. Comparing the
results for p(1/2)-LDA+U and p(0)-LDA+U it is observed
that the p(0) scheme produces a larger IB splitting than the
p(1/2) scheme, according to the tendency observed in the Mott
oxides. Whereas in [16], for U > 6 eV a metal insulator
transition takes place with the m2-LDA + U scheme (similar
to the p(1/2)-LDA + U ), here it happens for U > 3 eV with
the p(0)-LDA + U scheme.

3.5.2. Cr-doped chalcopyrite. The Cr-doped chalcopyrite
Crx Ga1−xCuS2 with x = 1/16 has an IB similar to the Cr-
doped zinc chalogenides. The results of the chalcopyrite case
show a similar behaviour with respect to the chalogenides case.
It can be seen in figure 7, where the Projected DOS on d-Cr
orbitals is shown using the p(1/2)-, p(0)- and m2-LDA + U
schemes. From panels (a) and (c), the schemes p(1/2) and m2
lead to similar results. However, the p(0)-LDA + U scheme
leads to more accumulation of states inside the valence band
(notice the scale change in the DOS for panel (b) with respect
to panels (a) and (c)).

4. Conclusions

Both the occupation numbers as well as the effective Coulomb
energy are crucial in the determination of the correlation effects
from a computational point of view. However, there is some
ambiguity in the definition of the occupation number matrix.
There is no unique or rigorous way to define the occupation
of localized atomic levels in a multi-atom system. Moreover,
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Figure 7. Projected DOS on d-Cr orbitals for the Cr-doped
chalcopyrite Crx Ga1−x CuS2 (x = 1/16 = 0.0625) with U = 3 eV
using (a) p(1/2)-LDA + U , (b) p(0)-LDA + U and
(c) m2-LDA + U . The Fermi energy as zero has been chosen
in this figure.

it is usually straightforward to identify the atomic levels to be
treated with the LDA/GGA + U approach in a given system.

In this work different definitions of the occupation number
matrix consistent with the use of a non-orthogonal basis set
are compared and discussed. Thus, we have used a general
definition that conserves the total number of electrons, i.e. the
trace of the occupation number matrix is equal to the total
number of electrons. From this, we also have used a general
definition that does not conserve the total number of electrons.
This non-conserving choice includes some of the more used
versions of the occupation number matrix. Therefore some
of the representations used in this work, either have not been
used or have been used only marginally in the literature.
All of them, from the most novel to those most used ones,
have been compared using different approaches and calculation
implementations.

For typical transition-metal oxide bulk systems, the
bandgap, magnetic moment and detailed electronic structures

are investigated with respect to the choice of the occupation
number matrix. This study has been carried out using both
LDA+U and GGA+U methodologies. In general, with all the
occupation schemes analysed, GGA + U leads to an increase
in the gaps and magnetic moments with respect to LDA + U .

In general the gaps decrease with the calculation scheme
in the direction p(α) � p′(α) > m2-LDA/GGA + U .
For the magnetic moments there are differences until ±1 μB

between the different LDA/GGA + U calculation schemes
when the same occupation matrices are used in order to obtain
the magnetic moments. However, almost independently of
the occupation matrices used in order to obtain the magnetic
moments, the magnetic moments decrease with the calculation
scheme used as p(α) � p′(α) > m2-LDA/GGA + U . From
the results, there is no definition that is clearly the best, and
probably there is not a best definition, simply because of the
ambiguity in the definition of the occupation.
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